Heterodimer formation of wild-type and amyotrophic lateral sclerosis-causing mutant Cu/Zn-superoxide dismutase induces toxicity independent of protein aggregation.
نویسندگان
چکیده
Recent studies provide evidence that wild-type Cu/Zn-superoxide dismutase (SOD1(hWT)) might be an important factor in mutant SOD1-mediated amyotrophic lateral sclerosis (ALS). In order to investigate its functional role in the pathogenesis of ALS, we designed fusion proteins of two SOD1 monomers linked by a polypeptide. We demonstrated that wild-type-like mutants, but not SOD1(G85R) homodimers, as well as mutant heterodimers including SOD1(G85R)-SOD1(hWT) display dismutase activity. Mutant homodimers showed an increased aggregation compared with the corresponding heterodimers in cell cultures and transgenic Caenorhabditis elegans, although SOD1(G85R) heterodimers are more toxic in functional assays. Our data show that (i) toxicity of mutant SOD1 is not correlated to its aggregation potential; (ii) dismutase-inactive mutants form dismutase-active heterodimers with SOD1(hWT); (iii) SOD1(hWT) can be converted to contribute to disease by forming active heterodimers. Therefore, we conclude that toxicity of mutant SOD1 is at least partially mediated through heterodimer formation with SOD1(hWT) in vivo and does not correlate with the aggregation potential of individual mutants.
منابع مشابه
Mutation-dependent polymorphism of Cu,Zn-superoxide dismutase aggregates in the familial form of amyotrophic lateral sclerosis.
More than 100 different mutations in Cu,Zn-superoxide dismutase (SOD1) are linked to a familial form of amyotrophic lateral sclerosis (fALS). Pathogenic mutations facilitate fibrillar aggregation of SOD1, upon which significant structural changes of SOD1 have been assumed; in general, however, a structure of protein aggregate remains obscure. Here, we have identified a protease-resistant core i...
متن کاملOxidative Modifications of Cu, Zn-Superoxide Dismutase (SOD1) – The Relevance to Amyotrophic Lateral Sclerosis (ALS)
Amyotrophic lateral sclerosis (ALS) is a fatal degenerative disease of motor neurons. About 10 % of ALS cases are affected in a familial trait, a subset of which is caused by the mutation of Cu, Zn-superoxide dismutase (SOD1) gene (Rosen et al., 1993). Since the identification of the gene for familial ALS, research emphasis for ALS has been placed on uncovering the pathogenic mechanism of motor...
متن کاملCommon dynamical signatures of familial amyotrophic lateral sclerosis-associated structurally diverse Cu, Zn superoxide dismutase mutants.
More than 100 structurally diverse point mutations leading to aggregation in the dimeric enzyme Cu, Zn superoxide dismutase (SOD1) are implicated in familial amyotrophic lateral sclerosis (FALS). Although SOD1 dimer dissociation is a known requirement for its aggregation, the common structural basis for diverse FALS mutations resulting in aggregation is not fully understood. In molecular dynami...
متن کاملMutant Cu/Zn-Superoxide Dismutase Induced Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis
Mutations in Cu/Zn superoxide dismutase (SOD1) gene are linked to the motor neuron death in familial amyotrophic lateral sclerosis (FALS). More than 100 missense mutations have been described to cause the disease and are distributed throughout the whole 153 amino acid sequence of SOD1 molecule (Valentine et al., 2005; Boillée et al., 2006). Mutant SOD1 molecules can be grouped according to thei...
متن کاملStructural and thermodynamic effects of post-translational modifications in mutant and wild type Cu, Zn superoxide dismutase.
Aggregation of Cu,Zn superoxide dismutase (SOD1) is implicated in amyotrophic lateral sclerosis. Glutathionylation and phosphorylation of SOD1 is omnipresent in the human body, even in healthy individuals, and has been shown to increase SOD1 dimer dissociation, which is the first step on the pathway toward SOD1 aggregation. We found that post-translational modification of SOD1, especially gluta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 17 10 شماره
صفحات -
تاریخ انتشار 2008